Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00103898" target="_blank" >RIV/00216224:14310/18:00103898 - isvavai.cz</a>
Alternative codes found
RIV/00025798:_____/18:00000285
Result on the web
<a href="http://dx.doi.org/10.5817/CPR2018-1-5" target="_blank" >http://dx.doi.org/10.5817/CPR2018-1-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/CPR2018-1-5" target="_blank" >10.5817/CPR2018-1-5</a>
Alternative languages
Result language
angličtina
Original language name
Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results
Original language description
This paper presents the preliminary results regarding the lithostratigraphy, petrography and petrology of James Ross Island Volcanic Group dominating the Lachman Crags and Cape Lachman lava-fed deltas in the Ulu Peninsula, James Ross Island north-eastern Antarctic Peninsula. Studied lava-fed deltas were produced via Late Miocene to Pleistocene sub-marine and sub-glacial volcanism and made up four main lithofacies: a- bottomset pillow lavas, peperites and associated volcanoclastic/siliciclastic deposits; b- foreset- bedded hyaloclastite breccias; c- intrusions (feeder dykes, sills, and plugs) and d- topset subaerial lavas. Collectively these lithofacies record the transition from an effusive subaqueous to an effusive subaerial eruption environment. All lava samples and dykes from bottomset, foreset and topset lava-fed delta associations are olivine-phyric alkali basalts and are mineralogically and geochemically homogeneous. These eruptive products display significant enrichments in alkali contents and have ocean island basalt (OIB)-type, intra-plate geochemical signatures characterized by enrichments in all highly to moderately incompatible trace elements relative to basaltic rocks from ocean ridge settings. Volcanic products from a number of different eruptive periods display limited variations in major and trace element relative abundances, indicating derivation from a relatively homogeneous mantle source. The results of quantitative modelling of geochemical data is consistent with the view that the primary melts from which these mafic alkaline rocks were originated are the products of relatively small degrees (~3-7%) of partial melting of a volatile-bearing, metasomatized mantle source. The magmatism is likely the result of extension-driven mantle upwelling.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10507 - Volcanology
Result continuities
Project
<a href="/en/project/LM2015078" target="_blank" >LM2015078: Czech Polar Research Infrastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czech Polar Reports
ISSN
1805-0689
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
24
Pages from-to
60-83
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85057980979