Boundary singularities of solutions to semilinear fractional equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00104021" target="_blank" >RIV/00216224:14310/18:00104021 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/view/j/ans.2018.18.issue-2/ans-2017-6048/ans-2017-6048.xml" target="_blank" >https://www.degruyter.com/view/j/ans.2018.18.issue-2/ans-2017-6048/ans-2017-6048.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ans-2017-6048" target="_blank" >10.1515/ans-2017-6048</a>
Alternative languages
Result language
angličtina
Original language name
Boundary singularities of solutions to semilinear fractional equations
Original language description
We prove the existence of a solution of (-Delta)(s)u + f(u) = 0 in a smooth bounded domain Omega with a prescribed boundary value mu in the class of Radon measures for a large class of continuous functions f satisfying a weak singularity condition expressed under an integral form. We study the existence of a boundary trace for positive moderate solutions. In the particular case where f(u) = u(p) and mu is a Dirac mass, we show the existence of several critical exponents p. We also demonstrate the existence of several types of separable solutions of the equation (-Delta)(s)u + u(p) = 0 in R-+(N).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Nonlinear Studies
ISSN
1536-1365
e-ISSN
2169-0375
Volume of the periodical
18
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
237-267
UT code for WoS article
000428801600003
EID of the result in the Scopus database
2-s2.0-85042004513