Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00104101" target="_blank" >RIV/00216224:14310/18:00104101 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >http://dx.doi.org/10.1002/cjs.11480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >10.1002/cjs.11480</a>
Alternative languages
Result language
angličtina
Original language name
Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study
Original language description
In the development of efficient predictive models, the key is to identify suitable predictors to establish a prediction model for a given linear or nonlinear model. This paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank-based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of dominance of LASSO over all the R-estimators (except the ridge R-estimator) is the sparsity-dimensional interval around the origin of the parameter space. We observe that the L_2-risk of the restricted R-estimator equals the lower bound on the L_2-risk of LASSO. Our conclusions are based on L_2-risk analysis and relative L_2-risk efficiencies with related tables and graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Canadian Journal of Statistics
ISSN
0319-5724
e-ISSN
1708-945X
Volume of the periodical
46
Issue of the periodical within the volume
4
Country of publishing house
CA - CANADA
Number of pages
15
Pages from-to
690-704
UT code for WoS article
000454597800009
EID of the result in the Scopus database
2-s2.0-85059551935