All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00104101" target="_blank" >RIV/00216224:14310/18:00104101 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >http://dx.doi.org/10.1002/cjs.11480</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >10.1002/cjs.11480</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study

  • Original language description

    In the development of efficient predictive models, the key is to identify suitable predictors to establish a prediction model for a given linear or nonlinear model. This paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank-based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of dominance of LASSO over all the R-estimators (except the ridge R-estimator) is the sparsity-dimensional interval around the origin of the parameter space. We observe that the L_2-risk of the restricted R-estimator equals the lower bound on the L_2-risk of LASSO. Our conclusions are based on L_2-risk analysis and relative L_2-risk efficiencies with related tables and graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Canadian Journal of Statistics

  • ISSN

    0319-5724

  • e-ISSN

    1708-945X

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CA - CANADA

  • Number of pages

    15

  • Pages from-to

    690-704

  • UT code for WoS article

    000454597800009

  • EID of the result in the Scopus database

    2-s2.0-85059551935