All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00106674" target="_blank" >RIV/00216224:14310/18:00106674 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1111/jvs.12604" target="_blank" >http://dx.doi.org/10.1111/jvs.12604</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/jvs.12604" target="_blank" >10.1111/jvs.12604</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications

  • Original language description

    Question: Is it possible to determine which combination of cluster number and taxon abundance transformation would produce the most effective classification of vegetation data? What is the effect of changing cluster number and taxon abundance weighting (applied simultaneously) on the stability and biological interpretation of vegetation classifications? Locality: Europe, Western Australia, simulated data. Methods: Real data sets representing Hungarian sub-montane grasslands, European wetlands, and Western Australian kwongan vegetation, as well as simulated data sets were used. The data sets were classified using the partitioning around medoids method. We generated classification solutions by gradually changing the transformation exponent applied to the species projected covers and the number of clusters. The effectiveness of each classification was assessed with a stability index. This index is based on bootstrap resampling of the original data set with subsequent elimination of duplicates. The vegetation types delimited by the most stable classification were compared with other classifications obtained at local maxima of the stability values. The effect of changing the transformation power exponent on the number of clusters, indexed according to their stability, was evaluated. Results: The optimal number of clusters varied with the power exponent in all cases, both with real and simulated data sets. With the real data sets, optimal cluster numbers obtained with different data transformations recovered interpretable biological patterns. Using the simulated data, the optima of stability values identified the simulated number of clusters correctly in most cases. Conclusions: With changing the settings of data transformation and the number of clusters, classifications of different stability can be produced. Highly stable classifications can be obtained from different settings for cluster number and data transformation. Despite similarly high stability, such classifications may reveal contrasting biological patterns, thus suggesting different interpretations. We suggest testing a wide range of available combinations to find the parameters resulting in the most effective classifications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Vegetation Science

  • ISSN

    1100-9233

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    336-347

  • UT code for WoS article

    000431503000021

  • EID of the result in the Scopus database

    2-s2.0-85042097350