Homotopical algebra is not concrete
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00107905" target="_blank" >RIV/00216224:14310/18:00107905 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/pdf/1704.00303.pdf" target="_blank" >https://arxiv.org/pdf/1704.00303.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40062-018-0197-3" target="_blank" >10.1007/s40062-018-0197-3</a>
Alternative languages
Result language
angličtina
Original language name
Homotopical algebra is not concrete
Original language description
We generalize Freyd's well-known result that " homotopy is not concrete", offering a general method to show that under certain assumptions on a model category M, its homotopy category ho(M) cannot be concrete. This result is part of an attempt to understand more deeply the relation between set theory and abstract homotopy theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Homotopy and Related Structures
ISSN
2193-8407
e-ISSN
1512-2891
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
673-687
UT code for WoS article
000445100800008
EID of the result in the Scopus database
2-s2.0-85053536126