Synthesis and properties of free-standing graphene nanosheets at atmospheric pressure conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00107909" target="_blank" >RIV/00216224:14310/18:00107909 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Synthesis and properties of free-standing graphene nanosheets at atmospheric pressure conditions
Original language description
Last decade two-dimensional carbon-based nanostructures such as graphene nanosheets, nanoribbons and carbon nanowalls have attracted much research interest, due to their remarkable properties combining high mechanical strength and flexibility, exceptional electronic and thermal conductivity, high carrier mobility and optical transparency. Potential application in different fields of science and technology include hydrogen and energy storage, reinforcement of polymer composites, electronics, electrochemical devices, or gas sensors. Our deposition process reported in this work is based on injecting ethanol vapours through a microwave plasma environment, where decomposition of ethanol molecules takes place. We used microwave plasma torch discharge (2.45 GHz, ~200 W, Figure 1) operating at atmospheric pressure conditions to synthesize graphene nanosheets with rectangular shape and typical size of hundreds of nanometres. Argon flowing through the central channel of the nozzle was used as the working gas to ignite the discharge. Mixture consisting of ethanol vapours and additional argon flow was delivered into plasma environment by outer channel of the nozzle. Wide range of deposition conditions resulted in synthesis of different types of carbon material. However, mastering the deposition process by setting specific set of deposition conditions led to synthesis of graphene sheets (Figure 2). Created samples were analysed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to probe the morphological, chemical and microstructural features of the produced material.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA18-08520S" target="_blank" >GA18-08520S: Towards understanding of nucleation process of two-dimensional carbon nanostructures in microwave plasma</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů