All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

THE LOCALIC ISOTROPY GROUP OF A TOPOS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00108286" target="_blank" >RIV/00216224:14310/18:00108286 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/33/41/33-41.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/33/41/33-41.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    THE LOCALIC ISOTROPY GROUP OF A TOPOS

  • Original language description

    It has been shown by J.Funk, P.Hofstra and B.Steinberg that any Grothendieck topos T is endowed with a canonical group object, called its isotropy group, which acts functorially on every object of the topos. We show that this group is in fact the group of points of a localic group object, called the localic isotropy group, which also acts on every object, and in fact also on every internal locale and on every T topos. This new localic isotropy group has better functoriality and stability property than the original version and sheds some light on the phenomenon of higher isotropy observed for the ordinary isotropy group. We prove in particular using a localic version of the isotropy quotient that any geometric morphism can be factored uniquely as a connected atomic geometric morphism followed by a so called "essentially anisotropic" geometric morphism, and that connected atomic morphisms are exactly the quotients by open isotropy actions, hence providing a form of Galois theory for general (unpointed) connected atomic geometric morphisms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    2018

  • Country of publishing house

    CA - CANADA

  • Number of pages

    28

  • Pages from-to

    1318-1345

  • UT code for WoS article

    000509270800018

  • EID of the result in the Scopus database