Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107335" target="_blank" >RIV/00216224:14310/19:00107335 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.chemosphere.2019.02.197" target="_blank" >http://dx.doi.org/10.1016/j.chemosphere.2019.02.197</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2019.02.197" target="_blank" >10.1016/j.chemosphere.2019.02.197</a>
Alternative languages
Result language
čeština
Original language name
Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts
Original language description
Mechanisms of pharmaceuticals action on biochemical and physiological processes in plants that determine plant growth and development are still mostly unknown. This study deals with the effects of non-steroidal anti-inflammatory drug diclofenac (DCF) on photosynthesis as an essential anabolic process. Changes in primary and secondary photosynthetic processes were assessed in chloroplasts isolated from Lemna minor exposed to 1, 10, 100, and 1000 uM DCF. Decreases in the potential and effective quantum yields of photosystem II (FV/FM by 21%, PhiII by 44% compared to control), changes in non-photochemical fluorescence quenching (NPQ), and a substantial drop in Hill reaction activity (by 73%), especially under 1000 uM DCF, were found. Limitation of electron transport through photosystem II was confirmed by increased fluorescence signals in steps J and I (by 50% and 23%, respectively, under 1000 uM DCF) in OJIP fluorescence transient. Photosystem I exhibited changes only in the redox state of P700 reaction centres (decrease in Pm by 10%, increase in reduced P700 by 5% under 1000 uM DCF). Similarly, RuBisCO activity was only lowered by 30% under 1000 uM DCF. In contrast, a significant increase in reactive oxygen and nitrogen species (by 116% and 157%, respectively) was observed under 10 uM DCF, and lipid peroxidation increased even at 1 uM DCF (by nearly seven times compared to the control). Results demonstrate the ability of environmentally relevant DCF concentrations to induce oxidative stress in isolated duckweed chloroplasts; however, photosynthetic processes were affected considerably only by the highest DCF treatments.
Czech name
Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts
Czech description
Mechanisms of pharmaceuticals action on biochemical and physiological processes in plants that determine plant growth and development are still mostly unknown. This study deals with the effects of non-steroidal anti-inflammatory drug diclofenac (DCF) on photosynthesis as an essential anabolic process. Changes in primary and secondary photosynthetic processes were assessed in chloroplasts isolated from Lemna minor exposed to 1, 10, 100, and 1000 uM DCF. Decreases in the potential and effective quantum yields of photosystem II (FV/FM by 21%, PhiII by 44% compared to control), changes in non-photochemical fluorescence quenching (NPQ), and a substantial drop in Hill reaction activity (by 73%), especially under 1000 uM DCF, were found. Limitation of electron transport through photosystem II was confirmed by increased fluorescence signals in steps J and I (by 50% and 23%, respectively, under 1000 uM DCF) in OJIP fluorescence transient. Photosystem I exhibited changes only in the redox state of P700 reaction centres (decrease in Pm by 10%, increase in reduced P700 by 5% under 1000 uM DCF). Similarly, RuBisCO activity was only lowered by 30% under 1000 uM DCF. In contrast, a significant increase in reactive oxygen and nitrogen species (by 116% and 157%, respectively) was observed under 10 uM DCF, and lipid peroxidation increased even at 1 uM DCF (by nearly seven times compared to the control). Results demonstrate the ability of environmentally relevant DCF concentrations to induce oxidative stress in isolated duckweed chloroplasts; however, photosynthetic processes were affected considerably only by the highest DCF treatments.
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
<a href="/en/project/GF17-33746L" target="_blank" >GF17-33746L: Drugs in the environment and interaction with plants</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemosphere
ISSN
0045-6535
e-ISSN
—
Volume of the periodical
224
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
892-899
UT code for WoS article
000466249600100
EID of the result in the Scopus database
2-s2.0-85063114800