Conformally Fedosov manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107381" target="_blank" >RIV/00216224:14310/19:00107381 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aim.2019.04.004" target="_blank" >https://doi.org/10.1016/j.aim.2019.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2019.04.004" target="_blank" >10.1016/j.aim.2019.04.004</a>
Alternative languages
Result language
angličtina
Original language name
Conformally Fedosov manifolds
Original language description
We introduce the notion of a conformally Fedosov structure and construct an associated Cartan connection. When an appropriate curvature vanishes, this allows us to construct a family of natural differential complexes akin to the BGG complexes from parabolic geometry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
349
Issue of the periodical within the volume
JUN 20 2019
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
839-868
UT code for WoS article
000468857300022
EID of the result in the Scopus database
2-s2.0-85064669841