Nuclei and conuclei on Girard posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108213" target="_blank" >RIV/00216224:14310/19:00108213 - isvavai.cz</a>
Result on the web
<a href="https://download.atlantis-press.com/article/125914812.pdf" target="_blank" >https://download.atlantis-press.com/article/125914812.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2991/eusflat-19.2019.42" target="_blank" >10.2991/eusflat-19.2019.42</a>
Alternative languages
Result language
angličtina
Original language name
Nuclei and conuclei on Girard posets
Original language description
It is well-known that the semantics of a given fuzzy logic can be formally axiomatized by means of a residuated poset. Based on a notion of dualizing (cyclic) element we introduce the notion of a Frobenius (Girard) poset. With this paper we hope to contribute to the theory of Frobenius posets and Girard posets. By means of a dualizing element we establish a one-to-one correspondence between a Frobenius poset and its opposite which is again a Frobenius poset. We also investigate some properties of nuclei and conuclei on Girard posets. Finally, we discuss the relation between quantic nuclei and ideal conuclei on a Girard poset and its opposite. We show that they are in one-to-one correspondence.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-06915S" target="_blank" >GA18-06915S: New approaches to aggregation operators in analysis and processing of data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Atlantis Studies in Uncertainty Modelling, volume 1
ISBN
9789462527706
ISSN
2589-6644
e-ISSN
—
Number of pages
8
Pages from-to
289-296
Publisher name
Atlantis Press
Place of publication
Neuveden
Event location
Praha
Event date
Jan 1, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000558710000042