SIMULATION OF ELECTRON INTERACTION WITH LIQUID WATER AND PROCESSES RELATED TO SUB-NANOSECOND ELECTRICAL BREAKDOWN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108248" target="_blank" >RIV/00216224:14310/19:00108248 - isvavai.cz</a>
Result on the web
<a href="https://www.nanocon.eu/files/uploads/01/NANOCON2018%20-%20Conference%20Proceedings_content.pdf" target="_blank" >https://www.nanocon.eu/files/uploads/01/NANOCON2018%20-%20Conference%20Proceedings_content.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
SIMULATION OF ELECTRON INTERACTION WITH LIQUID WATER AND PROCESSES RELATED TO SUB-NANOSECOND ELECTRICAL BREAKDOWN
Original language description
Sub-nanosecond electrical breakdown in dielectric liquids is of vital interest for applications, e.g. in high-voltage insulation, high-current switching and electric field-cell interactions. Liquid dielectrics in strong nonuniform electric fields are under influence of electrostrictive force that tends to move the fluid into the regions with higher electric field. If the voltage rise is fast enough(nanoseconds), the liquid does not have enough time to be set into motion in order to reduce the internal stress. In this case the electrostrictive force induces significant stress in the bulk of the liquid which is manifested as a negative pressure. At certain threshold, the negative pressure causes cavitation ruptures of the fluid. Subsequently, free electrons can be produced by emission from the surface inside the cavity and accelerated to energies exceeding the energy for ionization of water and thus, contribute to electrical breakdown of water. We present numerical model, which gives us basic ingredients necessary to study interaction of accelerated electrons with liquid water during sub-nanosecond electrical breakdown. We aim to determine geometrical conditions in electrode vicinity needed for electron multiplication and subsequent build up of space charge, for which we propose to use Monte Carlo software Geant4-DNA. Using of proper simulation techniques could enable us to explain some experimentally observed properties of sub-nanosecond electrical breakdown in liquid water.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA18-04676S" target="_blank" >GA18-04676S: Fundamental phenomena of nanosecond discharge in liquid water</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
10TH ANNIVERSARY INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2018 (R))
ISBN
9788087294895
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
665-670
Publisher name
TANGER LTD
Place of publication
SLEZSKA
Event location
Brno, CZECH REPUBLIC
Event date
Oct 17, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000513131900114