All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cdk13-/- Mice Exhibit Developmental Delay and Craniofacial Malformations during Embryonic Development

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108283" target="_blank" >RIV/00216224:14310/19:00108283 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26620/19:PU132813

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cdk13-/- Mice Exhibit Developmental Delay and Craniofacial Malformations during Embryonic Development

  • Original language description

    Cyclin-dependent kinase 13 (CDK13) belongs to the family of transcription regulating kinases. Together with its binding partners, cyclin K or L, they form a complex which regulates phosphorylation of RNA Polymerase II, or control alternative splicing. Large numbers of different mutations of this gene cause various developmental defects. In humans, these mutations cause developmental delay, intellectual disability, autism, seizures, facial dysmorphisms, structural heart, brain and digital abnormalities. Our mouse strain with mutation in Cdk13 gene has very similar phenotypic manifestations including developmental delay, craniofacial and heart abnormalities, plus defects in kidney morphology. The aim of this study is to precisely describe morphological changes in the craniofacial region of Cdk13-/- embryos and to reveal what cellular and molecular processes are responsible for these changes. According to macroscopic and microscopic analysis, the most obvious morphological differences between wild type and mutat embryos in the craniofacial region are a generally smaller head, cleft palate and smaller and dysmorphic incisor tooth germs. Alizarin red and Alcian blue staining showed differences in morphology of bones and cartilages of the head between wild type and mutant embryos. For deeper analysis of bones and teeth, we performed muCTscanning. Analyses were performed on embryos from E11.5 to E16.5. Precursor cells normally migrate along the axons to their final destination in order to differentiate and form a specific tissue or can serve there as a source for eventual renewal. Our goal is to reveal whether migration of craniofacial-forming cells is impeded if axonal outgrowth in Cdk13 mutants is defective. CDK13 is known to be responsible for axon outgrowth in vitro. This hypothesis will be verified using IHC on slides and on wholemount embryos, and on PCR arrays specific for mouse neurogenesis markers.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    30106 - Anatomy and morphology (plant science to be 1.6)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů