Invariant connections and Nabla-Einstein structures on isotropy irreducible spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108933" target="_blank" >RIV/00216224:14310/19:00108933 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.geomphys.2018.10.012" target="_blank" >https://doi.org/10.1016/j.geomphys.2018.10.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2018.10.012" target="_blank" >10.1016/j.geomphys.2018.10.012</a>
Alternative languages
Result language
angličtina
Original language name
Invariant connections and Nabla-Einstein structures on isotropy irreducible spaces
Original language description
This paper is devoted to a systematic study and classification of invariant affine or metric connections on certain classes of naturally reductive spaces. For any non-symmetric, effective, strongly isotropy irreducible2homogeneous Riemannian manifold , we compute the dimensions of the spaces of -invariant affine and metric connections. For such manifolds we also describe the space of invariant metric connections with skew-torsion. For the compact Lie group we classify all bi-invariant metric connections, by introducing a new family of bi-invariant connections whose torsion is of vectorial type. Next we present applications related with the notion of -Einstein manifolds with skew-torsion. In particular, we classify all such invariant structures on any non-symmetric strongly isotropy irreducible homogeneous space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
1879-1662
Volume of the periodical
138
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
28
Pages from-to
257-284
UT code for WoS article
000461538700018
EID of the result in the Scopus database
2-s2.0-85056655391