All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Invariant connections and Nabla-Einstein structures on isotropy irreducible spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108933" target="_blank" >RIV/00216224:14310/19:00108933 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.geomphys.2018.10.012" target="_blank" >https://doi.org/10.1016/j.geomphys.2018.10.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomphys.2018.10.012" target="_blank" >10.1016/j.geomphys.2018.10.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Invariant connections and Nabla-Einstein structures on isotropy irreducible spaces

  • Original language description

    This paper is devoted to a systematic study and classification of invariant affine or metric connections on certain classes of naturally reductive spaces. For any non-symmetric, effective, strongly isotropy irreducible2homogeneous Riemannian manifold , we compute the dimensions of the spaces of -invariant affine and metric connections. For such manifolds we also describe the space of invariant metric connections with skew-torsion. For the compact Lie group we classify all bi-invariant metric connections, by introducing a new family of bi-invariant connections whose torsion is of vectorial type. Next we present applications related with the notion of -Einstein manifolds with skew-torsion. In particular, we classify all such invariant structures on any non-symmetric strongly isotropy irreducible homogeneous space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geometry and Physics

  • ISSN

    0393-0440

  • e-ISSN

    1879-1662

  • Volume of the periodical

    138

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    28

  • Pages from-to

    257-284

  • UT code for WoS article

    000461538700018

  • EID of the result in the Scopus database

    2-s2.0-85056655391