All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution of discharge parameters and sputtered species ionization in reactive HiPIMS with oxygen, nitrogen and acetylene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00109216" target="_blank" >RIV/00216224:14310/19:00109216 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ab0363/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ab0363/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ab0363" target="_blank" >10.1088/1361-6595/ab0363</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution of discharge parameters and sputtered species ionization in reactive HiPIMS with oxygen, nitrogen and acetylene

  • Original language description

    Reactive high power impulse magnetron sputtering offers a great opportunity for high quality coating production, thus understanding the processes accompanying deposition is of great importance. In this paper, the evolution of numerous discharge parameters such as total pressure, discharge current and sputtered species number densities are studied in argon with oxygen, nitrogen or acetylene admixture. The experiments are compared to the reactive direct current magnetron sputtering where the deposition process usually exhibits hysteresis behaviour and the ionization fraction of sputtered species is significantly lower. The decrease in the titanium atom and ion number densities with the increasing degree of target poisoning is detected for all the studied admixtures. However, while the sputtered species number densities decrease the sputtered species ionization fraction increases. Depending on the reactive gas admixture, the ionization fraction of the sputtered species increases from 75% achieved in pure argon discharge up to 90% attained in the poisoned mode of the reactive sputtering. This increase was the most pronounced for oxygen and nitrogen admixtures. Mutual comparison of the reactive sputtering with nitrogen, oxygen and acetylene indicated multiple causes for the observed increase.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LO1411" target="_blank" >LO1411: Development of Centre for low-cost plasma and nanotechnology surface modification</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science and Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000460060600001

  • EID of the result in the Scopus database

    2-s2.0-85065739855