On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00109357" target="_blank" >RIV/00216224:14310/19:00109357 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039618304248?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039618304248?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2018.07.060" target="_blank" >10.1016/j.jde.2018.07.060</a>
Alternative languages
Result language
angličtina
Original language name
On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials
Original language description
Let Omega subset of R-N (N >= 3) be a bounded C-2 domain and delta(x) = dist (x, partial derivative Omega). Put L-mu = Delta + mu/delta(2) with mu > 0. In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to -L(mu)u = u(p) + tau in Omega, u = nu on partial derivative Omega, where mu > 0, p > 0, tau and nu are measures on Omega and partial derivative Omega respectively. We then establish existence results for the system {-L(mu)u = is an element of v(p) + tau in Omega, -L(mu)v = is an element of u (p) over tilde + tau in Omega, u = nu, v = (nu) over tilde on partial derivative Omega, where is an element of = +/- 1, p > 0, (p) over tilde > 0, tau and (tau) over tilde are measures on Omega, nu and (nu) over tilde are measures on partial derivative Omega. We also deal with elliptic systems where the nonlinearities are more general.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
266
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
43
Pages from-to
833-875
UT code for WoS article
000449108500025
EID of the result in the Scopus database
2-s2.0-85050670528