All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

X-ray spectra of the Fe-L complex

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00110204" target="_blank" >RIV/00216224:14310/19:00110204 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aanda.org/articles/aa/abs/2019/07/aa33860-18/aa33860-18.html" target="_blank" >https://www.aanda.org/articles/aa/abs/2019/07/aa33860-18/aa33860-18.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201833860" target="_blank" >10.1051/0004-6361/201833860</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    X-ray spectra of the Fe-L complex

  • Original language description

    The Hitomi results on the Perseus cluster have led to improvements in our knowledge of atomic physics that are crucial for the precise diagnostic of hot astrophysical plasma observed with high-resolution X-ray spectrometers. However, modeling uncertainties remains, both within but especially beyond Hitomi's spectral window. A major challenge in spectral modeling is the Fe-L spectrum, which is basically a complex assembly of n &gt;= 3 to n = 2 transitions of Fe ions in different ionization states, affected by a range of atomic processes such as collisional excitation, resonant excitation, radiative recombination, dielectronic recombination, and innershell ionization. In this paper we perform a large-scale theoretical calculation on each of the processes with the flexible atomic code (FAC), focusing on ions of Fe XVII to Fe XXIV that form the main body of the Fe-L complex. The calculation includes a large set of energy levels with a broad range of quantum number n and l, taking into account the full-order configuration interaction and all possible resonant channels between two neighboring ions. The new data are found to be consistent within 20% with the recent individual R-matrix calculations for the main Fe-L lines, although the discrepancies become significantly larger for the weaker transitions, in particular for Fe XVIII, Fe XIX, and Fe XX. By further testing the new FAC calculations with the high-quality RGS data from 15 elliptical galaxies and galaxy clusters, we note that the new model gives systematically better fits than the current SPEX v3.04 code, and the mean Fe abundance decreases by 12%, while the O/Fe ratio increases by 16% compared with the results from the current code. Comparing the FAC fit results to those with the R-matrix calculations, we find a temperature-dependent discrepancy of up to similar to 10% on the Fe abundance between the two theoretical models. Further dedicated tests with both observed spectra and targeted laboratory measurements are needed to resolve the discrepancies, and ultimately to get the atomic data ready for the next high-resolution X-ray spectroscopy mission.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ASTRONOMY & ASTROPHYSICS

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    627

  • Issue of the periodical within the volume

    JUL 2019

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    24

  • Pages from-to

    51-74

  • UT code for WoS article

    000473255900004

  • EID of the result in the Scopus database

    2-s2.0-85103686607