Interaction of selenite with metallothionein studied by Brdicka reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00110355" target="_blank" >RIV/00216224:14310/19:00110355 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00706-019-02397-4" target="_blank" >https://link.springer.com/article/10.1007/s00706-019-02397-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00706-019-02397-4" target="_blank" >10.1007/s00706-019-02397-4</a>
Alternative languages
Result language
angličtina
Original language name
Interaction of selenite with metallothionein studied by Brdicka reaction
Original language description
Metallothionein II (MT) is a cytosolic, ubiquitous, low-molecular-weight protein present in various tissues of mammals and non-mammals. MTs have a high content of thiol groups (-SH) which can bind mineral micronutrients and xenobiotic heavy metals. In this study, we investigated the electrode processes of MT at a mercury electrode in the presence of sodium selenite by means of the Brdika reaction in the differential pulse voltammetric mode. In Brdika solution containing ammonium buffer and [Co(NH3)(6)]Cl-3, the substance that provides catalytic reactions with proteins, interactions between MT and sodium selenite were analyzed via the hydrogen evolution catalytic signals. The reaction of -SH groups of MT with [Co(H2O)(6)](2+) complex ions on the mercury surface results into the catalytic peak Cat2. It was found that selenite ions are active in the Brdika reaction and yield also the catalytic peak of hydrogen evolution Cat2. With the increasing concentration of sodium selenite, cobalt (Co) in MT is replaced by selenium (Se). When selenite concentration increases above the MT binding capacity, i.e., MT cannot bind more Se, only selenite ions can be responsible for Cat2 signals. From our results, we conclude that Brdika reaction is a suitable method to study MT binding properties and to evaluate the influence of sodium selenite. To elucidate the experimental results a new interpretation leading to complete description of the mechanism is presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/LM2015041" target="_blank" >LM2015041: CEITEC Nano</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte fur Chemie-Chemical Monthly
ISSN
0026-9247
e-ISSN
1434-4475
Volume of the periodical
150
Issue of the periodical within the volume
3
Country of publishing house
AT - AUSTRIA
Number of pages
7
Pages from-to
469-475
UT code for WoS article
000461394400014
EID of the result in the Scopus database
2-s2.0-85062717120