Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00110396" target="_blank" >RIV/00216224:14310/19:00110396 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1186/s12302-019-0193-1" target="_blank" >https://link.springer.com/article/10.1186/s12302-019-0193-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12302-019-0193-1" target="_blank" >10.1186/s12302-019-0193-1</a>
Alternative languages
Result language
angličtina
Original language name
Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
Original language description
Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Here, we integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects. Monitoring serves a range of purposes, from control of chemical and ecological status compliance to safeguarding specific water uses, such as drinking water abstraction. Various water sampling techniques, chemical target, suspect and non-target analyses as well as an array of in vitro, in vivo and in situ bioanalytical methods were advanced to improve monitoring of water contamination. Major improvements for broader applicability include tailored sampling techniques, screening and identification techniques for a broader and more diverse set of chemicals, higher detection sensitivity, standardized protocols for chemical, toxicological, and ecological assessments combined with systematic evidence evaluation techniques. No single method or combination of methods is able to meet all divergent monitoring purposes. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that, irrespective of the specific purpose, assessment of monitoring results would benefit substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. In this paper, we specify the information required to: (1) identify relevant contaminants, (2) assess the impact of contamination in aquatic ecosystems, or (3) quantify cause-effect relationships between contaminants and adverse effects. Specific strategies to link chemical and bioanalytical information are outlined for each of these distinct goals. These strategies have been developed and explored using case studies in the Danube and Rhine river basins as well as for rivers of the Iberian Peninsula. Current water quality assessment suffers from biases resulting from differences in approaches and associated uncertainty analyses. While exposure approaches tend to ignore data gaps (i.e., missing contaminants), effect-based approaches penalize data gaps with increased uncertainty factors. This integrated work suggests systematic ways to deal with mixture exposures and combined effects in a more balanced way, and thus provides guidance for future tailored environmental monitoring.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Environmental Sciences Europe
ISSN
2190-4707
e-ISSN
2190-4715
Volume of the periodical
31
Issue of the periodical within the volume
February
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
1-17
UT code for WoS article
000459395300001
EID of the result in the Scopus database
2-s2.0-85061815105