All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Freshwater ecosystems profit from activated carbon-based wastewater treatment across various levels of biological organisation in a short timeframe

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113378" target="_blank" >RIV/00216224:14310/19:00113378 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1186/s12302-019-0267-0" target="_blank" >http://dx.doi.org/10.1186/s12302-019-0267-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12302-019-0267-0" target="_blank" >10.1186/s12302-019-0267-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Freshwater ecosystems profit from activated carbon-based wastewater treatment across various levels of biological organisation in a short timeframe

  • Original language description

    BackgroundWastewater treatment plants are known as major sources for the release of micropollutants and bacteria into surface waters. To reduce this contaminant and microbial input, new technologies for effluent treatment have become available. The present paper reports the chemical, microbiological, biochemical, and biological effects of upgrading a wastewater treatment plant (WWTP) with a powdered activated carbon stage in the catchment area of the Schussen River, the largest German tributary of Lake Constance. Data were obtained prior to and after the upgrade between 2011 and 2017.ResultsAfter the upgrading, the release of antibiotic resistant and non-resistant bacteria, micropollutants, and their effect potentials was significantly lower in the effluent. In addition, in the Schussen River downstream of the wastewater treatment plant, reduced concentrations of micropollutants were accompanied by both a significantly improved health of fish and invertebrates, along with a better condition of the macrozoobenthic community.ConclusionsThe present study clearly provides evidence for the causality between a WWTP upgrade by powdered activated carbon and ecosystem improvement and demonstrates the promptness of positive ecological changes in response to such action. The outcome of this study urgently advocates an investment in further wastewater treatment as a basis for decreasing the release of micropollutants and both resistant and non-resistant bacteria into receiving water bodies and, as a consequence, to sustainably protect river ecosystem health and drinking water resources for mankind in the future.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Sciences Europe

  • ISSN

    2190-4707

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000495653500001

  • EID of the result in the Scopus database

    2-s2.0-85074857824