Iterated algebraic injectivity and the faithfulness conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114577" target="_blank" >RIV/00216224:14310/20:00114577 - isvavai.cz</a>
Result on the web
<a href="https://journals.mq.edu.au/index.php/higher_structures/article/view/120/81" target="_blank" >https://journals.mq.edu.au/index.php/higher_structures/article/view/120/81</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Iterated algebraic injectivity and the faithfulness conjecture
Original language description
Algebraic injectivity was introduced to capture homotopical structures like algebraic Kan complexes. But at a much simpler level, it allows one to describe sets with operations subject to no equations. If one wishes to add equations (or operations of greater complexity) then it is natural to consider iterated algebraic injectives, which we introduce and study in the present paper. Our main application concerns Grothendieck's weak omega-groupoids, introduced in Pursuing Stacks, and the closely related definition of weak omega-category due to Maltsiniotis. Using omega iterations we describe these as iterated algebraic injectives and, via this correspondence, prove the faithfulness conjecture of Maltsiniotis. Through work of Ara, this implies a tight correspondence between the weak omega-categories of Maltsiniotis and those of Batanin/Leinster.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Higher Structures
ISSN
2209-0606
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
2
Country of publishing house
AU - AUSTRALIA
Number of pages
28
Pages from-to
183-210
UT code for WoS article
—
EID of the result in the Scopus database
—