All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iterated algebraic injectivity and the faithfulness conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114577" target="_blank" >RIV/00216224:14310/20:00114577 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.mq.edu.au/index.php/higher_structures/article/view/120/81" target="_blank" >https://journals.mq.edu.au/index.php/higher_structures/article/view/120/81</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iterated algebraic injectivity and the faithfulness conjecture

  • Original language description

    Algebraic injectivity was introduced to capture homotopical structures like algebraic Kan complexes. But at a much simpler level, it allows one to describe sets with operations subject to no equations. If one wishes to add equations (or operations of greater complexity) then it is natural to consider iterated algebraic injectives, which we introduce and study in the present paper. Our main application concerns Grothendieck's weak omega-groupoids, introduced in Pursuing Stacks, and the closely related definition of weak omega-category due to Maltsiniotis. Using omega iterations we describe these as iterated algebraic injectives and, via this correspondence, prove the faithfulness conjecture of Maltsiniotis. Through work of Ara, this implies a tight correspondence between the weak omega-categories of Maltsiniotis and those of Batanin/Leinster.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Higher Structures

  • ISSN

    2209-0606

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    28

  • Pages from-to

    183-210

  • UT code for WoS article

  • EID of the result in the Scopus database