All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field- and model-based calibration of polyurethane foam passive air samplers in different climate regions highlights differences in sampler uptake performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00116497" target="_blank" >RIV/00216224:14310/20:00116497 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S135223102030474X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S135223102030474X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.atmosenv.2020.117742" target="_blank" >10.1016/j.atmosenv.2020.117742</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field- and model-based calibration of polyurethane foam passive air samplers in different climate regions highlights differences in sampler uptake performance

  • Original language description

    Polyurethane foam (PUF) passive air samplers (PAS) are widely used for measurements of persistent organic pollutants (POPs) and other semi-volatile organic compounds (SVOCs) in large-scale monitoring networks as well as in case studies around the globe. Calibration of PUF-PAS is performed by field-based calibration studies or passive sampler uptake models. Both are typically performed and/or validated in temperate zones, however the sampling rates are more widely applied, including in tropical and polar zones. Here, we present field-based calibration results for MONET PUF-PAS from a subtropical and tropical site (Nairobi, Kenya and Accra, Ghana) based on side-by-side deployment of PUF-PAS and active air samplers (AAS), as well as model PAS uptake from available passive sampler uptake models. By comparing these results with a similar calibration from a temperate site (Brno, Czech Republic), we show that higher ambient temperatures result in higher effective sampling rates for intermediate molecular weight SVOCs (logK(OA) of 7-11) as a result of lower particle-bound fractions, and in lower sample volumes for lighter SVOCs (logK(OA)&lt;7) as a result of a shorter time to equilibrium. This highlights the importance of adjusting passive sampling rates according to site-specific air temperatures. Model-based calibrations provided sampling volumes in agreement with the field-based calibration except for high K-OA compounds, but the source of the discrepancy appears to be the model parameterization of the specific PUF-PAS sampler type rather than temperature-induced differences. Overall, the results suggest that while careful consideration should be taken when extrapolating calibration information from temperate to tropical zones, field or model-based calibrations are appropriate, and greater attention should be given to ensuring passive sampler models are correctly parameterized for the sampling configuration used.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atmospheric Environment

  • ISSN

    1352-2310

  • e-ISSN

  • Volume of the periodical

    238

  • Issue of the periodical within the volume

    October 2020

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000558539100015

  • EID of the result in the Scopus database

    2-s2.0-85087758522