All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Expansion of Hot Plasma with Kappa Distribution into Cold Plasma

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00116772" target="_blank" >RIV/00216224:14310/20:00116772 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3847/1538-4357/ab89a5" target="_blank" >https://doi.org/10.3847/1538-4357/ab89a5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ab89a5" target="_blank" >10.3847/1538-4357/ab89a5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Expansion of Hot Plasma with Kappa Distribution into Cold Plasma

  • Original language description

    The X-ray emission of coronal flare sources can be explained by considering the kappa electron distribution. Motivated by this fact, we study the problem of how hot plasma with the kappa distribution of electrons is confined in these sources. For comparison, we analyze the same problem, but with the Maxwellian distribution. We use a 3D particle-in-cell code, which is large in one direction and thus effectively only one-dimensional, but describe all electromagnetic effects. In the case with the Maxwellian distribution, and in agreement with the previous studies, we show a formation of the double layer at the hot-cold transition region that suppresses the flux of hot electrons from hot plasma into the cold one. In the case with the kappa distribution, contrary to the Maxwellian case, we found that there are several fronts with the double layers in the hot-cold transition region. It is caused by a more extended tail in the kappa case than in the Maxwellian one. The electrons from the extended tail freely escape from the hot plasma into a cold one. They form a beam that generates the return current and also Langmuir turbulence, where Langmuir waves accumulated at some locations. At these locations, owing to the ponderomotive force, Langmuir waves generate density depressions, where the double layers with the thermal fronts that suppress the hot electron flux, are formed. We also show how protons accelerate in these processes. Finally, we compare the Kappa and Maxwellian cases and discuss how these processes could be observed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/LM2015085" target="_blank" >LM2015085: CERIT Scientific Cloud</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    896

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000540822700001

  • EID of the result in the Scopus database

    2-s2.0-85091221500