All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting protein stability and solubility changes upon mutations: data perspective

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117450" target="_blank" >RIV/00216224:14310/20:00117450 - isvavai.cz</a>

  • Result on the web

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202000933" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202000933</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cctc.202000933" target="_blank" >10.1002/cctc.202000933</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting protein stability and solubility changes upon mutations: data perspective

  • Original language description

    Understanding mutational effects on protein stability and solubility is of particular importance for creating industrially relevant biocatalysts, resolving mechanisms of many human diseases, and producing efficient biopharmaceuticals, to name a few. Forin silicopredictions, the complexity of the underlying processes and increasing computational capabilities favor the use of machine learning. However, this approach requires sufficient training data of reasonable quality for making precise predictions. This minireview aims to summarize and scrutinize available mutational datasets commonly used for training predictors. We analyze their structure and discuss the possible directions of improvement in terms of data size, quality, and availability. We also present perspectives on the development of mutational data for accelerating the design of efficient predictors, introducing two new manually curated databases FireProt(DB)and SoluProtMut(DB)for protein stability and solubility, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ChemCatChem

  • ISSN

    1867-3880

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

    5590-5598

  • UT code for WoS article

    000565378700001

  • EID of the result in the Scopus database

    2-s2.0-85090208505