Primal-dual block-proximal splitting for a class of non-convex problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00118171" target="_blank" >RIV/00216224:14310/20:00118171 - isvavai.cz</a>
Result on the web
<a href="https://epub.oeaw.ac.at/?arp=0x003bd91d" target="_blank" >https://epub.oeaw.ac.at/?arp=0x003bd91d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1553/etna_vol52s509" target="_blank" >10.1553/etna_vol52s509</a>
Alternative languages
Result language
angličtina
Original language name
Primal-dual block-proximal splitting for a class of non-convex problems
Original language description
We develop block structure-adapted primal-dual algorithms for non-convex non-smooth optimisation problems, whose objectives can be written as compositions G(x) + F(K(x)) of non-smooth block-separable convex functions G and F with a nonlinear Lipschitz-differentiable operator K. Our methods are refinements of the nonlinear primal-dual proximal splitting method for such problems without the block structure, which itself is based on the primal-dual proximal splitting method of Chambolle and Pock for convex problems. We propose individual step length parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows them to convergence faster by adapting to the structure of the problem. For the squared distance of the iterates to a critical point, we show local O(1/N), O(1/N-2), and linear rates under varying conditions and choices of the step length parameters. Finally, we demonstrate the performance of the methods for the practical inverse problems of diffusion tensor imaging and electrical impedance tomography.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_050%2F0008496" target="_blank" >EF17_050/0008496: MSCAfellow@MUNI</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Transactions on Numerical Analysis
ISSN
1068-9613
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
2020
Country of publishing house
US - UNITED STATES
Number of pages
44
Pages from-to
509-552
UT code for WoS article
000592187100027
EID of the result in the Scopus database
2-s2.0-85092726928