On electron acceleration in liquid ruptures caUsed by electrostrictive forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119095" target="_blank" >RIV/00216224:14310/21:00119095 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.37904/nanocon.2020.3728" target="_blank" >https://doi.org/10.37904/nanocon.2020.3728</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/nanocon.2020.3728" target="_blank" >10.37904/nanocon.2020.3728</a>
Alternative languages
Result language
angličtina
Original language name
On electron acceleration in liquid ruptures caUsed by electrostrictive forces
Original language description
Water is often used as a medium for preparation of nanoparticles in plasma. One way to obtain plasma in liquids is a nanosecond high voltage pulse applied on micrometer sharp electrode, so that the electric discharge is developed. Liquid water under the action of sharp pulse of the electric field may be disrupted so that cavities of nanometer scale would eventually appear and expand. Owing the electric field forces, those nanocavities rapidly elongate to the form of long needle-like ruptures in the liquid bulk. We study electron acceleration in these ruptures and analyze the production of secondary electrons in the water near the nanocavity surfaces. For electron transport in the nanocavity and for electron water-interactions we use Monte Carlo model based on Geant4-DNA simulation toolkit. Nanocavities are modelled as hollow cylindrical voids in liquid water with homogeneous electric field inside oriented along the cylindrical axis. Due to the nanometric scale of these voids, electrons can move collisionless inside, where are also accelerated by the action of the electric field. Primary electrons are injected as monoenergetic isotropic source from the inner surface of the void. We seek physical conditions, a combination of electric field strength and geometry of the cavity that would lead to the production of more than one secondary electron per single primary electron. This study is relevant for understanding of initial phases of electric discharge development in liquid water.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA18-04676S" target="_blank" >GA18-04676S: Fundamental phenomena of nanosecond discharge in liquid water</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NANOCON 2020: 12th International Conference on Nanomaterials - Research & Application
ISBN
9788087294987
ISSN
2694-930X
e-ISSN
—
Number of pages
4
Pages from-to
173-176
Publisher name
TANGER Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Oct 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664505500029