All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On electron acceleration in liquid ruptures caUsed by electrostrictive forces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119095" target="_blank" >RIV/00216224:14310/21:00119095 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.37904/nanocon.2020.3728" target="_blank" >https://doi.org/10.37904/nanocon.2020.3728</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2020.3728" target="_blank" >10.37904/nanocon.2020.3728</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On electron acceleration in liquid ruptures caUsed by electrostrictive forces

  • Original language description

    Water is often used as a medium for preparation of nanoparticles in plasma. One way to obtain plasma in liquids is a nanosecond high voltage pulse applied on micrometer sharp electrode, so that the electric discharge is developed. Liquid water under the action of sharp pulse of the electric field may be disrupted so that cavities of nanometer scale would eventually appear and expand. Owing the electric field forces, those nanocavities rapidly elongate to the form of long needle-like ruptures in the liquid bulk. We study electron acceleration in these ruptures and analyze the production of secondary electrons in the water near the nanocavity surfaces. For electron transport in the nanocavity and for electron water-interactions we use Monte Carlo model based on Geant4-DNA simulation toolkit. Nanocavities are modelled as hollow cylindrical voids in liquid water with homogeneous electric field inside oriented along the cylindrical axis. Due to the nanometric scale of these voids, electrons can move collisionless inside, where are also accelerated by the action of the electric field. Primary electrons are injected as monoenergetic isotropic source from the inner surface of the void. We seek physical conditions, a combination of electric field strength and geometry of the cavity that would lead to the production of more than one secondary electron per single primary electron. This study is relevant for understanding of initial phases of electric discharge development in liquid water.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA18-04676S" target="_blank" >GA18-04676S: Fundamental phenomena of nanosecond discharge in liquid water</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2020: 12th International Conference on Nanomaterials - Research & Application

  • ISBN

    9788087294987

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    173-176

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 21, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000664505500029