All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural and magnetic properties of Fe-oxide layers prepared by inkjet printing on Si-substrate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119099" target="_blank" >RIV/00216224:14310/21:00119099 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081723:_____/21:00541935 RIV/00216305:26310/20:PU142014

  • Result on the web

    <a href="https://doi.org/10.37904/nanocon.2020.3682" target="_blank" >https://doi.org/10.37904/nanocon.2020.3682</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2020.3682" target="_blank" >10.37904/nanocon.2020.3682</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural and magnetic properties of Fe-oxide layers prepared by inkjet printing on Si-substrate

  • Original language description

    Magnetic films with two, four, six, and eight layers were prepared using 2D inkjet printing on the 333 K heated Si-substrates at ambient conditions. The microstructure, phase composition of layers, and magnetic studies were investigated using wide spectrum of experimental methods with the aim to find the optimal conditions for producing magnetic sensors by digital printing technology in the near future. As the magnetic compound, the hematite powder was chosen and its milling with Si-binder dissolved in dowanol using glass balls and vial to prevent contamination was done to prepared suspension appropriate for printing. It is shown that hematite transformed markedly into maghemite, thus the layers consisted of small amount hematite and dominant maghemite phases determining the magnetic properties. From the viewpoint of magnetic behavior, the highest saturation magnetization and the lowest coercivity was obtained at the sample with 8 layers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2020: 12th International Conference on Nanomaterials - Research & Application

  • ISBN

    9788087294987

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    24-29

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 21, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000664505500003