All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119168" target="_blank" >RIV/00216224:14310/21:00119168 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR08693B" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR08693B</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d0nr08693b" target="_blank" >10.1039/d0nr08693b</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?

  • Original language description

    Loading active ingredients on nanocarrier systems is becoming a common strategy for improving pesticide formulations. One of the most important properties of these nanoformulations is the proportion of pesticide associated with the nanocarriers (encapsulation efficiency, EE). EE is often determined by centrifugal ultrafiltration. However, the losses of active ingredient in the centrifugal ultrafiltration devices are typically not assessed, potentially leading to erroneous results. In this work, the losses of three pesticides (tebuconazole, terbuthylazine and chlorpyrifos) during centrifugal ultrafiltration have been systematically evaluated for nine different devices. Results suggest that centrifugal ultrafiltration is not suitable for determining the EE of compounds such as chlorpyrifos as 100% losses were observed on all the devices tested. Losses of tebuconazole and terbuthylazine were highly variable according to the type of membrane and the lowest losses were observed in the devices with hydrophilic regenerated cellulose membranes. Based on these results, we propose a correction factor and demonstrate its application to calculate the EE of two nanoformulations based on poly(epsilon-caprolactone) nanocarriers. The approach extends the applicability of centrifugal ultrafiltration to a wider range of pesticide nanoformulations. We also discuss the effect of dilution on EE and make recommendations to improve the characterisation of nanoparticles-based pesticide nanoformulations in the future.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    5410-5418

  • UT code for WoS article

    000630384400023

  • EID of the result in the Scopus database

    2-s2.0-85102860594