All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The effect of ambient air plasma generated by coplanar and volume dielectric barrier discharge on the surface characteristics of polyamide foils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00120790" target="_blank" >RIV/00216224:14310/21:00120790 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.vacuum.2020.109887" target="_blank" >https://doi.org/10.1016/j.vacuum.2020.109887</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.vacuum.2020.109887" target="_blank" >10.1016/j.vacuum.2020.109887</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The effect of ambient air plasma generated by coplanar and volume dielectric barrier discharge on the surface characteristics of polyamide foils

  • Original language description

    This study targeted wettability and adhesion enhancement of polyamide (PA) foil surface by plasma treatment at atmospheric pressure. Volume dielectric barrier discharge (VDBD) and diffuse coplanar surface barrier discharge (DCSBD) were applied in ambient air using exposure times 0.25–2 s. Water contact angle (WCA) measurements proved that both plasma sources achieved significant wettability improvement of PA 6 foil surface immediately after treatment. However, the durability of this hydrophilic effect was much more pronounced with the DCSBD, compared to the VDBD. The lowest registered drop of WCA after DCSBD treatment was from the initial 65° to 28°, which even after one month of storage recovered only to 44°. In contrast, the VDBD treatment at similar parameters resulted in the WCA increase from 45° to 54° already after the first day of ageing. The XPS analysis of oxygen-based polar functional groups incorporated onto the treated PA 6 surface proved higher efficiency of DCSBD plasma. Moreover, the degree of surface oxidation was raised by increasing DCSBD's input power. Tape peel test revealed adhesion improvement achieved only with DCSBD, which had a growing tendency with increasing exposure time and input power. SEM did not show any noticeable damage of surface after the applied plasma treatments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Vacuum

  • ISSN

    0042-207X

  • e-ISSN

    1879-2715

  • Volume of the periodical

    183

  • Issue of the periodical within the volume

    January 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000600753500004

  • EID of the result in the Scopus database

    2-s2.0-85095785989