All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00120861" target="_blank" >RIV/00216224:14310/21:00120861 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0304389420317155" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304389420317155</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2020.123729" target="_blank" >10.1016/j.jhazmat.2020.123729</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii

  • Original language description

    Ethylene is an important phytohormone for plant adaptation to heavy metal stress. However, the effects of ethylene on radial apoplastic transport of Cd remain elusive. This study investigated the role of ethylene on apoplastic barriers development and consequences for Cd uptake in Sedum alfredii. In response to Cd, endogenous ethylene production in hyperaccumulating ecotype (HE) roots was decreased due to the down-regulated ex-pressions of ethylene biosynthesis genes, while the opposite result was observed in non-hyperaccumulating ecotype (NHE). Interestingly, the ethylene emission in HE was always higher than that in NHE, regardless of Cd concentrations. Results of exogenous application of ethylene biosynthesis precursor/inhibitor indicate that ethylene with high level would delay the formation of apoplastic barriers in HE through restraining phenylal-anine ammonia lyase activity and gene expressions related to lignin/suberin biosynthesis. Simultaneously, correlation analyses suggest that Cd-induced apoplastic barriers formation may be also regulated by ethylene signaling. By using an apoplastic bypass tracer and scanning ion-selected electrode, we observed that the delayed deposition of apoplastic barriers significantly promoted Cd influx in roots. Taken together, high endogenous ethylene in HE postponed the formation of apoplastic barriers and thus promoted the Cd accumulation in the apoplast of roots.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hazardous Materials

  • ISSN

    0304-3894

  • e-ISSN

    1873-3336

  • Volume of the periodical

    403

  • Issue of the periodical within the volume

    February 2021

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000598631600007

  • EID of the result in the Scopus database

    2-s2.0-85089804907