All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasma Treatment of Thermally Modified and Unmodified Norway Spruce Wood by Diffuse Coplanar Surface Barrier Discharge

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00120964" target="_blank" >RIV/00216224:14310/21:00120964 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/coatings11010040" target="_blank" >https://doi.org/10.3390/coatings11010040</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings11010040" target="_blank" >10.3390/coatings11010040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasma Treatment of Thermally Modified and Unmodified Norway Spruce Wood by Diffuse Coplanar Surface Barrier Discharge

  • Original language description

    This work deals with the treatment of wood surfaces by diffuse coplanar surface barrier discharge (DCSBD) generated at atmospheric pressure. The effect of the distance of the sample from the electrode surface and the composition of the working gas in the chamber was studied. Norway spruce (Picea abies) wood, both unmodified and thermally modified, was chosen as the investigated material. The change in the surface free energy (SFE) of the wood surface was investigated by contact angles measurements. Chemical and structural changes were studied using infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Activation at a 0.15 mm gap from the electrode led in all cases to an increase in the SFE. The largest change in SFE components was recorded for wood thermally modified to 200 °C. At a 1 mm gap from the electrode increase of SFE occurred only when oxygen (O2) and argon (Ar) were used as working gas. Treatment in air and nitrogen (N2) resulted in an anomalous reduction of SFE. With the growing temperature of thermal modification, this hydrophobization effect became less pronounced. The results point out the importance of precise position control during the DCSBD mediated plasma treatment. A slight reduction of SFE on thermally modified spruce was achieved also by short term ultra-violet (UV) light exposure, generated by DCSBD.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018097" target="_blank" >LM2018097: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

    2079-6412

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000610026200001

  • EID of the result in the Scopus database

    2-s2.0-85099668159