Free Radical Isomerizations in Acetylene Bromoboration Reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00121467" target="_blank" >RIV/00216224:14310/21:00121467 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/molecules26092501" target="_blank" >https://doi.org/10.3390/molecules26092501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules26092501" target="_blank" >10.3390/molecules26092501</a>
Alternative languages
Result language
angličtina
Original language name
Free Radical Isomerizations in Acetylene Bromoboration Reaction
Original language description
The experimentally motivated question of the acetylene bromoboration mechanism was addressed in order to suggest possible radical isomerization pathways for the syn-adduct. Addition–elimination mechanisms starting with a bromine radical attack at the “bromine end” or the “boron end” of the C=C bond were considered. Dispersion-corrected DFT and MP2 methods with the SMD solvation model were employed using three all-electron bases as well as the ECP28MWB ansatz. The rate-determining, elimination step had a higher activation energy (12 kcal mol−1) in case of the “bromine end” attack due to intermediate stabilization at both the MP2 and DFT levels. In case of the “boron end” attack, two modes of C–C bond rotation were followed and striking differences in MP2 vs. DFT potential energy surfaces were observed. Employing MP2, addition was followed by either a 180° rotation through an eclipsed conformation of vicinal bromine atoms or by an opposite rotation avoiding that conformation, with 5 kcal mol−1 of elimination activation energy. Within B3LYP, the addition and rotation proceeded simultaneously, with a 9 (7) kcal mol−1 barrier for rotation involving (avoiding) eclipsed conformation of vicinal bromines. For weakly bound complexes, ZPE corrections with MP2 revealed significant artifacts when diffuse bases were included, which must be considered in the Gibbs free energy profile interpretation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10401 - Organic chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecules
ISSN
1420-3049
e-ISSN
1420-3049
Volume of the periodical
26
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
„2501“
UT code for WoS article
000650680000001
EID of the result in the Scopus database
2-s2.0-85105235933