All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hands as Agents of Chemical Transport in the Indoor Environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122207" target="_blank" >RIV/00216224:14310/21:00122207 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.estlett.0c01006" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.estlett.0c01006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.estlett.0c01006" target="_blank" >10.1021/acs.estlett.0c01006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hands as Agents of Chemical Transport in the Indoor Environment

  • Original language description

    Indoor environments are important sources of exposure to chemicals intentionally added to consumer products, building materials, etc. Previous work has shown that semivolatile organic compounds (SVOCs) migrate from product/material sources to partition to indoor surfaces, including skin and hands, and that SVOCs on hands reasonably indicate nondietary exposure to indoor SVOCs. We hypothesize that the hands of indoor occupants, which contact numerous products and surfaces, transport SVOCs in the indoor environment to an extent comparable to that of fugacity-driven and advective transport. This process of "hand-based" chemical transport is analogous to that of fomite transmission of pathogens. We explore this hypothesis using a data set of halogenated flame retardants, organophosphate esters, and phthalate esters in indoor air, floor dust, and wipes of hands and surfaces of electronic devices of 51 participants. Cluster analysis shows the similarity of the SVOC profiles on all participants' hands relative to those of all device surfaces, demonstrating the ubiquity of these SVOCs. Network analysis consistently shows the centrality of hands, followed by air, dust, and laptops, indicating that hands are most correlated with all sample types. The significance of this hypothesis lies in the ability of hands to rapidly transfer SVOCs among surfaces indoors, with implications for exposure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/LM2018121" target="_blank" >LM2018121: RECETOX RI</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENVIRONMENTAL SCIENCE &amp; TECHNOLOGY LETTERS

  • ISSN

    2328-8930

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    326-332

  • UT code for WoS article

    000640891100008

  • EID of the result in the Scopus database

    2-s2.0-85105032856