All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The leaf economic and plant size spectra of European forest understory vegetation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122531" target="_blank" >RIV/00216224:14310/21:00122531 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1111/ecog.05598" target="_blank" >https://doi.org/10.1111/ecog.05598</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/ecog.05598" target="_blank" >10.1111/ecog.05598</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The leaf economic and plant size spectra of European forest understory vegetation

  • Original language description

    Forest understories play a vital role in ecosystem functioning and the provision of ecosystem services. However, the extent to which environmental conditions drive dominant ecological strategies in forest understories at the continental scale remains understudied. Here, we used similar to 29 500 forest vegetation plots sampled across Europe and classified into 25 forest types to explore the relative role of macroclimate, soil pH and tree canopy cover in driving abundance-weighted patterns in the leaf economic spectrum (LES) and plant size spectrum (PSS) of forest understories (shrub and herb layers). We calculated LES using specific leaf area (SLA) and leaf dry matter content (LDMC) and PSS using plant height and seed mass of vascular plant species found in the understories. We found that forest understories had more conservative leaf economics in areas with more extreme mean annual temperatures (mainly Fennoscandia and the Mediterranean Basin), more extreme soil pH and under more open canopies. Warm and summer-dry regions around the Mediterranean Basin and areas of Atlantic Europe also had taller understories with heavier seeds than continental temperate or boreal areas. Understories of broadleaved deciduous forests, such as Fagus forests on non-acid soils, or ravine forests, more commonly hosted species with acquisitive leaf economics. In contrast, some coniferous forests, such as Pinus, Larbc and Picea mire forests, or Pinus sylvestris light taiga and sclerophyllous forests, more commonly hosted species with conservative leaf economics. Our findings highlight the importance of macroclimate and soil factors in driving trait variation of understory communities at the continental scale and the mediator effect of canopy cover on these relationships. We also provide the first maps and analyses of LES and PSS of forest understories across Europe and give evidence that the understories of European forest types are differently positioned along major axes of trait variation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10619 - Biodiversity conservation

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ecography

  • ISSN

    0906-7590

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1311-1324

  • UT code for WoS article

    000664463300001

  • EID of the result in the Scopus database

    2-s2.0-85108290526