CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00123820" target="_blank" >RIV/00216224:14310/21:00123820 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41467-021-23535-9" target="_blank" >https://www.nature.com/articles/s41467-021-23535-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-021-23535-9" target="_blank" >10.1038/s41467-021-23535-9</a>
Alternative languages
Result language
angličtina
Original language name
CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation
Original language description
CRISPR-Cas pathways provide prokaryotes with acquired "immunity" against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation. CAPPs are putative Primase-Polymerases associated with CRISPR-Cas operons. Here, the authors show CAPPs genetic and physical association with Cas1 and Cas2, their capacity to function as DNA-dependent DNA primases and DNA polymerases, and that Cas1-Cas2 complex adjacent to CAPP has bona fide spacer integration activity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications
ISSN
2041-1723
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
3690
UT code for WoS article
000665032700012
EID of the result in the Scopus database
2-s2.0-85108100789