Morphology of positive ionization waves in atmospheric pressure air: influence of electrode set-up geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00124479" target="_blank" >RIV/00216224:14310/21:00124479 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac2be5/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac2be5/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6595/ac2be5" target="_blank" >10.1088/1361-6595/ac2be5</a>
Alternative languages
Result language
angličtina
Original language name
Morphology of positive ionization waves in atmospheric pressure air: influence of electrode set-up geometry
Original language description
A numerical parametric study on positive diffuse discharges in point-to-plane geometry in air at atmospheric pressure is presented. Different discharge characteristics are studied: ignition time, connection time to the grounded cathode plane, shape of the discharge and its maximum radius at the connection time, evolution of the maximum electric field in the discharge front and velocity of the ionization front during its propagation. First, a case at a DC voltage of 50 kV applied on a rod anode ended by a semi-sphere with a radius of 100 mu m set at 1.6 cm from a grounded cathode plane is considered. The influence of the rod radius, the position of a disc holder, the shape of the anode electrode and the radial extension of the computational domain are studied. The radius of curvature of the anode tip (varied between 100 and 1000 mu m) and the shape of the anode electrode (rod or hyperbola) are shown to have a negligible influence on discharge characteristics. Conversely, the presence of a disc holder or a small radial computational domain lead to a decrease of the maximum discharge radius at the connection time and a change in the discharge shape from a conical to an ellipsoidal shape. These changes on the discharge morphology have only a limited impact on the propagation velocity of the discharge front and maximum electric field on the discharge axis. Then, a point-to-plane geometry with a rod electrode of 50 mu m radius, in a 1.6 cm gap, with a 100 kV voltage applied with a rise time of 1 ns is studied. The influence of a disc holder on the discharge characteristics is the same as for lower DC voltages. Finally, the time evolution of the absolute value of the electric field at different test points on the discharge axis is studied. Close to the anode tip, rapidly after the peak of electric field due to the passage of the ionization front, the electric field in the discharge channel is shown to increase to values higher than the breakdown field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2018097" target="_blank" >LM2018097: R&D centre for plasma and nanotechnology surface modifications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plasma Sources Science and Technology
ISSN
0963-0252
e-ISSN
1361-6595
Volume of the periodical
30
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
1-21
UT code for WoS article
000714747700001
EID of the result in the Scopus database
2-s2.0-85119200316