Resolvent and spectrum for discrete symplectic systems in the limit point case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119357" target="_blank" >RIV/00216224:14310/22:00119357 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.laa.2021.11.001" target="_blank" >https://doi.org/10.1016/j.laa.2021.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2021.11.001" target="_blank" >10.1016/j.laa.2021.11.001</a>
Alternative languages
Result language
angličtina
Original language name
Resolvent and spectrum for discrete symplectic systems in the limit point case
Original language description
The spectrum of an arbitrary self-adjoint extension of the minimal linear relation associated with the discrete symplectic system in the limit point case is completely characterized by using the limiting Weyl–Titchmarsh M+(λ) -function. Furthermore, a dependence of the spectrum on a boundary condition is investigated and, consequently, several results of the singular Sturmian theory are derived.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
634
Issue of the periodical within the volume
February
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
179-209
UT code for WoS article
000720871500011
EID of the result in the Scopus database
2-s2.0-85119284142