All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119376" target="_blank" >RIV/00216224:14310/22:00119376 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00526-021-02102-6" target="_blank" >https://link.springer.com/article/10.1007/s00526-021-02102-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00526-021-02102-6" target="_blank" >10.1007/s00526-021-02102-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations

  • Original language description

    Let (Omega subset {mathbb {R}}^N) ((N ge 3)) be a (C^2) bounded domain and (Sigma subset Omega ) be a compact, (C^2) submanifold in ({mathbb {R}}^N) without boundary, of dimension k with (0le k &lt; N-2). Denote (d_Sigma (x): = mathrm {dist},(x,Sigma )) and (L_mu : = Delta + mu d_Sigma ^{-2}) in (Omega {setminus } Sigma ), (mu in {mathbb {R}}). The optimal Hardy constant (H:=(N-k-2)/2) is deeply involved in the study of the Schrödinger operator (L_mu ). The Green kernel and Martin kernel of (-L_mu ) play an important role in the study of boundary value problems for nonhomogeneous linear equations involving (-L_mu ). If (mu le H^2) and the first eigenvalue of (-L_mu ) is positive then the existence of the Green kernel of (-L_mu ) is guaranteed by the existence of the associated heat kernel. In this paper, we construct the Martin kernel of (-L_mu ) and prove the Representation theory which ensures that any positive solution of the linear equation (-L_mu u = 0) in (Omega {setminus } Sigma ) can be uniquely represented via this kernel. We also establish sharp, two-sided estimates for Green kernel and Martin kernel of (-L_mu ). We combine these results to derive the existence, uniqueness and a priori estimates of the solution to boundary value problems with measures for nonhomogeneous linear equations associated to (-L_mu ).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Calculus of Variations and Partial Differential Equations

  • ISSN

    0944-2669

  • e-ISSN

    1432-0835

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    36

  • Pages from-to

    1-36

  • UT code for WoS article

    000717551300005

  • EID of the result in the Scopus database

    2-s2.0-85119156947