All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Normal orthogonality spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119382" target="_blank" >RIV/00216224:14310/22:00119382 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X2100809X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X2100809X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2021.125730" target="_blank" >10.1016/j.jmaa.2021.125730</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Normal orthogonality spaces

  • Original language description

    An orthogonality space is a set X together with a symmetric and irreflexive binary relation ⊥, called the orthogonality relation. A block partition of X is a partition of a maximal set of mutually orthogonal elements of X, and a decomposition of X is a collection of subsets of X each of which is the orthogonal complement of the union of the others. (X, ⊥) is called normal if any block partition gives rise to a unique decomposition of the space. The set of one-dimensional subspaces of a Hilbert space equipped with the usual orthogonality relation provides the motivating example. Together with the maps that are, in a natural sense, compatible with the formation of decompositions from block partitions, the normal orthogonality spaces form a category, denoted by NOS. The objective of the present paper is to characterise both the objects and the morphisms of NOS from various perspectives as well as to compile basic categorical properties of NOS.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    507

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    125730

  • UT code for WoS article

    000710583300013

  • EID of the result in the Scopus database

    2-s2.0-85116584657