Normal orthogonality spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119382" target="_blank" >RIV/00216224:14310/22:00119382 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X2100809X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X2100809X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2021.125730" target="_blank" >10.1016/j.jmaa.2021.125730</a>
Alternative languages
Result language
angličtina
Original language name
Normal orthogonality spaces
Original language description
An orthogonality space is a set X together with a symmetric and irreflexive binary relation ⊥, called the orthogonality relation. A block partition of X is a partition of a maximal set of mutually orthogonal elements of X, and a decomposition of X is a collection of subsets of X each of which is the orthogonal complement of the union of the others. (X, ⊥) is called normal if any block partition gives rise to a unique decomposition of the space. The set of one-dimensional subspaces of a Hilbert space equipped with the usual orthogonality relation provides the motivating example. Together with the maps that are, in a natural sense, compatible with the formation of decompositions from block partitions, the normal orthogonality spaces form a category, denoted by NOS. The objective of the present paper is to characterise both the objects and the morphisms of NOS from various perspectives as well as to compile basic categorical properties of NOS.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
507
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
125730
UT code for WoS article
000710583300013
EID of the result in the Scopus database
2-s2.0-85116584657