All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119688" target="_blank" >RIV/00216224:14310/22:00119688 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0304389421022743?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304389421022743?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2021.127306" target="_blank" >10.1016/j.jhazmat.2021.127306</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes

  • Original language description

    Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/ estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptormediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hazardous Materials

  • ISSN

    0304-3894

  • e-ISSN

  • Volume of the periodical

    424

  • Issue of the periodical within the volume

    February 2022

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000711820200003

  • EID of the result in the Scopus database

    2-s2.0-85116700603