All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cone structures and parabolic geometries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125176" target="_blank" >RIV/00216224:14310/22:00125176 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00208-021-02208-4" target="_blank" >https://link.springer.com/article/10.1007%2Fs00208-021-02208-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-021-02208-4" target="_blank" >10.1007/s00208-021-02208-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cone structures and parabolic geometries

  • Original language description

    A cone structure on a complex manifold M is a closed submanifold C⊂PTM of the projectivized tangent bundle which is submersive over M. A conic connection on C specifies a distinguished family of curves on M in the directions specified by C. There are two common sources of cone structures and conic connections, one in differential geometry and another in algebraic geometry. In differential geometry, we have cone structures induced by the geometric structures underlying holomorphic parabolic geometries, a classical example of which is the null cone bundle of a holomorphic conformal structure. In algebraic geometry, we have the cone structures consisting of varieties of minimal rational tangents (VMRT) given by minimal rational curves on uniruled projective manifolds. The local invariants of the cone structures in parabolic geometries are given by the curvature of the parabolic geometries, the nature of which depend on the type of the parabolic geometry, i.e., the type of the fibers of C→M. For the VMRT-structures, more intrinsic invariants of the conic connections which do not depend on the type of the fiber play important roles. We study the relation between these two different aspects for the cone structures induced by parabolic geometries associated with a long simple root of a complex simple Lie algebra. As an application, we obtain a local differential-geometric version of the global algebraic-geometric recognition theorem due to Mok and Hong–Hwang. In our local version, the role of rational curves is completely replaced by appropriate torsion conditions on the conic connection.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

    1432-1807

  • Volume of the periodical

    383

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    45

  • Pages from-to

    715-759

  • UT code for WoS article

    000659801200001

  • EID of the result in the Scopus database

    2-s2.0-85107502551