All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantification of surface charging memory effect in ionization wave dynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125221" target="_blank" >RIV/00216224:14310/22:00125221 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-022-04914-8" target="_blank" >https://www.nature.com/articles/s41598-022-04914-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-022-04914-8" target="_blank" >10.1038/s41598-022-04914-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantification of surface charging memory effect in ionization wave dynamics

  • Original language description

    The dynamics of ionization waves (IWs) in atmospheric pressure discharges is fundamentally determined by the electric polarity (positive or negative) at which they are generated and by the presence of memory effects, i.e. leftover charges and reactive species that influence subsequent IWs. This work examines and compares positive and negative IWs in pulsed plasma jets (1 μs on-time), showing the difference in their nature and the different resulting interaction with a dielectric BSO target. For the first time, it is shown that a surface charging memory effect is produced, i.e. that a significant amount of surface charges and electric field remain in the target in between discharge pulses (200 μs off-time). This memory effect directly impacts IW dynamics and is especially important when using negative electric polarity. The results suggest that the remainder of surface charges is due to the lack of charged particles in the plasma near the target, which avoids a full neutralization of the target. This demonstration and the quantification of the memory effect are possible for the first time by using an unique approach, assessing the electric field inside a dielectric material through the combination of an advanced experimental technique called Mueller polarimetry and state-of-the-art numerical simulations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018097" target="_blank" >LM2018097: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    1181

  • UT code for WoS article

    000746132400055

  • EID of the result in the Scopus database

    2-s2.0-85123481693