All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125571" target="_blank" >RIV/00216224:14310/22:00125571 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aimsciences.org/article/doi/10.3934/cpaa.2022056" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/cpaa.2022056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/cpaa.2022056" target="_blank" >10.3934/cpaa.2022056</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities

  • Original language description

    This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of $ p $-$ q $ type and singular nonlinearities$ left{ begin{alignedat}{2} {} - mathcal{L}_{p,q} u &amp; {} = lambda frac{f(u)}{u^gamma}, u&gt;0 &amp;&amp; quadmbox{ in } , Omega, u &amp; {} = 0 &amp;&amp; quadmbox{ on } partialOmega, end{alignedat} right. $where $ Omega $ is a bounded domain in $ mathbb{R}^N $ with $ C^2 $ boundary, $ N geq 1 $, $ lambda &gt;0 $ is a real parameter,$ mathcal{L}_{p,q} u : = {rm{div}}(|nabla u|^{p-2} nabla u + |nabla u|^{q-2} nabla u), $$ 1

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communication in Pure and applied analysis

  • ISSN

    1534-0392

  • e-ISSN

    1553-5258

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    2253-2269

  • UT code for WoS article

    000772953800001

  • EID of the result in the Scopus database

    2-s2.0-85129940761