Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125571" target="_blank" >RIV/00216224:14310/22:00125571 - isvavai.cz</a>
Result on the web
<a href="https://www.aimsciences.org/article/doi/10.3934/cpaa.2022056" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/cpaa.2022056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/cpaa.2022056" target="_blank" >10.3934/cpaa.2022056</a>
Alternative languages
Result language
angličtina
Original language name
Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities
Original language description
This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of $ p $-$ q $ type and singular nonlinearities$ left{ begin{alignedat}{2} {} - mathcal{L}_{p,q} u & {} = lambda frac{f(u)}{u^gamma}, u>0 && quadmbox{ in } , Omega, u & {} = 0 && quadmbox{ on } partialOmega, end{alignedat} right. $where $ Omega $ is a bounded domain in $ mathbb{R}^N $ with $ C^2 $ boundary, $ N geq 1 $, $ lambda >0 $ is a real parameter,$ mathcal{L}_{p,q} u : = {rm{div}}(|nabla u|^{p-2} nabla u + |nabla u|^{q-2} nabla u), $$ 1
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communication in Pure and applied analysis
ISSN
1534-0392
e-ISSN
1553-5258
Volume of the periodical
21
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
2253-2269
UT code for WoS article
000772953800001
EID of the result in the Scopus database
2-s2.0-85129940761