Non-oscillation of modified Euler type linear and half-linear differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125705" target="_blank" >RIV/00216224:14310/22:00125705 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s40879-021-00522-4" target="_blank" >https://link.springer.com/article/10.1007/s40879-021-00522-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40879-021-00522-4" target="_blank" >10.1007/s40879-021-00522-4</a>
Alternative languages
Result language
angličtina
Original language name
Non-oscillation of modified Euler type linear and half-linear differential equations
Original language description
Modified Euler type second order half-linear differential equations are considered and a non-oscillation criterion is derived for them. This criterion is the counterpart of a previously obtained oscillation theorem. Thus, from the main result of this paper, it follows that the studied equations are conditionally oscillatory in a very general case. To prove the non-oscillation criterion, a combination of the Riccati technique and the generalized Prüfer angle is used. Since the criterion is new in many cases (especially, in the linear case), several corollaries are formulated and the novelty is illustrated by an example as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF19_073%2F0016943" target="_blank" >EF19_073/0016943: Internal grant agency of Masaryk University</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Mathematics
ISSN
2199-675X
e-ISSN
2199-6768
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
700-721
UT code for WoS article
000746798500001
EID of the result in the Scopus database
2-s2.0-85123495388