All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Atomic layer deposition of oxide coatings on porous metal and polymer structures fabricated by additive manufacturing methods (laser-based powder bed fusion, material extrusion, material jetting)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00126759" target="_blank" >RIV/00216224:14310/22:00126759 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2468023022006228" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2468023022006228</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.surfin.2022.102361" target="_blank" >10.1016/j.surfin.2022.102361</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Atomic layer deposition of oxide coatings on porous metal and polymer structures fabricated by additive manufacturing methods (laser-based powder bed fusion, material extrusion, material jetting)

  • Original language description

    Complex porous 316 L stainless steel, Ti-6Al-4V, Ti-6Al-7Nb, ULTEM™ 1010 and MED610™ polymer structures were produced with additive manufacturing methods. The structures were surface functionalized by atomic layer deposition of titanium, zinc and zirconium oxide coatings with a thickness between 14 and 43 nm. Deep and narrow structures with aspect ratios &gt;10 could be coated. Titanium oxide films are mostly amorphous when plasma-assisted deposition is used and contain nanocrystalline anatase when deposited by thermal atomic layer deposition. The deposited titanium oxide grains ranged in size from ∼20 to 60 nm. In interior parts of the fractured porous polymer model structures with pore sizes of 1–2 mm, both thermal and plasma-assisted titanium oxide thin films and partly delamination were detected. X-ray photoelectron spectroscopy analysis revealed almost stoichiometric composition and dominance of the Ti (IV) oxidation state at a 250 °C deposition temperature. Zinc oxide coatings in porous polymer model structures partly delaminate as well, while adhesion and homogeneity is higher for printed Ti-6Al-7Nb lattice structures with a 0.5-mm mesh size. Zirconium oxide coatings on Ti-6Al-4V lattice structures with a 0.8-mm mesh size are comparable to zinc oxide coatings but are mostly crystalline. This is attributed to the relatively high, 300 °C deposition temperature. The findings demonstrate potential but also limitations of combined additive manufacturing and atomic layer deposition for medicine and energy production applications. In addition, the results confirm previous studies that metallic and polymeric substrate materials and process conditions strongly influence the coating structure and composition, and individual development of each intended application is required.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018097" target="_blank" >LM2018097: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Surfaces and Interfaces

  • ISSN

    2468-0230

  • e-ISSN

    2468-0230

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    November 2022

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000864894700001

  • EID of the result in the Scopus database

    2-s2.0-85138756261