All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semilinear fractional elliptic equations with source term and boundary measure data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00128818" target="_blank" >RIV/00216224:14310/22:00128818 - isvavai.cz</a>

  • Result on the web

    <a href="http://yokohamapublishers.jp/online2/oppafa/vol7/p863.html" target="_blank" >http://yokohamapublishers.jp/online2/oppafa/vol7/p863.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semilinear fractional elliptic equations with source term and boundary measure data

  • Original language description

    A notion of s-boundary trace recently introduced by Nguyen and Véron (Adv. Nonlinear Stud. 18, 237-267, 2018) is an efficient tool to study boundary value problems with measure data for fractional elliptic equations with an absorption nonlinearity. In this paper, we investigate a fractional equation with a source term $(-Delta)^s u=f(u)$ in $Omega$ with a prescribed s-boundary trace $rho nu$, where $Omega$ is a $C^2$ bounded domain of $mathbb{R}^N$ ($N&gt;2s$), $s in (frac{1}{2},1)$, $fin C^{beta}_{loc}(mathbb{R})$, for some $beta in(0,1)$, $nu$ is a positive Radon measure on $partial Omega$ with total mass 1 and $rho$ is a positive parameter. We provide an existence result for the above equation and discuss regularity property of solutions. When $f(u)=u^p$, we prove that there exists a critical exponent $p_s:=frac{N+s}{N-s}$ in the following sense. If $pgeq p_s$, the problem does not admit any positive solution with $nu$ being a Dirac mass. If $pin(1,p_s)$ there exits a threshold value $rho^*&gt;0$ such that for $rhoin (0, rho^*]$, the problem admits a positive solution and for $rho&gt;rho^*$, no positive solution exists. We also show that, for $rho&gt;0$ small enough, the problem admits at least two positive solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pure and Applied Functional Analysis

  • ISSN

    2189-3756

  • e-ISSN

    2189-3764

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    23

  • Pages from-to

    863-885

  • UT code for WoS article

  • EID of the result in the Scopus database