Asymptotic proximity to higher order nonlinear differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129115" target="_blank" >RIV/00216224:14310/22:00129115 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/anona-2022-0254/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2022-0254/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2022-0254" target="_blank" >10.1515/anona-2022-0254</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic proximity to higher order nonlinear differential equations
Original language description
The existence of unbounded solutions and their asymptotic behavior is studied for higher order differential equations considered as perturbations of certain linear differential equations. In particular, the existence of solutions with polynomial-like or noninteger power-law asymptotic behavior is proved. These results give a relation between solutions to nonlinear and corresponding linear equations, which can be interpreted, roughly speaking, as an asymptotic proximity between the linear case and the nonlinear one. Our approach is based on the induction method, an iterative process and suitable estimates for solutions to the linear equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
2191-950X
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
1598-1613
UT code for WoS article
000811188400001
EID of the result in the Scopus database
2-s2.0-85132319202