All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ALGEBRAICALLY COFIBRANT AND FIBRANT OBJECTS REVISITED

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129405" target="_blank" >RIV/00216224:14310/22:00129405 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.4310/HHA.2022.v24.n1.a14" target="_blank" >https://dx.doi.org/10.4310/HHA.2022.v24.n1.a14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4310/HHA.2022.v24.n1.a14" target="_blank" >10.4310/HHA.2022.v24.n1.a14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ALGEBRAICALLY COFIBRANT AND FIBRANT OBJECTS REVISITED

  • Original language description

    We extend all known results about transferred model structures on algebraically cofibrant and fibrant objects by working with weak model categories. We show that for an accessible weak model category there are always Quillen equivalent transferred weak model structures on both the categories of algebraically cofibrant and algebraically fibrant objects. Under additional assumptions, these transferred weak model structures are shown to be left, right or Quillen model structures. By combining both constructions, we show that each combinatorial weak model category is connected, via a chain of Quillen equivalences, to a combinatorial Quillen model category in which all objects are fibrant.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Homology, Homotopy and Applications

  • ISSN

    1532-0073

  • e-ISSN

    1532-0081

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    271-298

  • UT code for WoS article

    000898664600013

  • EID of the result in the Scopus database

    2-s2.0-85129706833