ALGEBRAICALLY COFIBRANT AND FIBRANT OBJECTS REVISITED
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129405" target="_blank" >RIV/00216224:14310/22:00129405 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.4310/HHA.2022.v24.n1.a14" target="_blank" >https://dx.doi.org/10.4310/HHA.2022.v24.n1.a14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/HHA.2022.v24.n1.a14" target="_blank" >10.4310/HHA.2022.v24.n1.a14</a>
Alternative languages
Result language
angličtina
Original language name
ALGEBRAICALLY COFIBRANT AND FIBRANT OBJECTS REVISITED
Original language description
We extend all known results about transferred model structures on algebraically cofibrant and fibrant objects by working with weak model categories. We show that for an accessible weak model category there are always Quillen equivalent transferred weak model structures on both the categories of algebraically cofibrant and algebraically fibrant objects. Under additional assumptions, these transferred weak model structures are shown to be left, right or Quillen model structures. By combining both constructions, we show that each combinatorial weak model category is connected, via a chain of Quillen equivalences, to a combinatorial Quillen model category in which all objects are fibrant.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Homology, Homotopy and Applications
ISSN
1532-0073
e-ISSN
1532-0081
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
271-298
UT code for WoS article
000898664600013
EID of the result in the Scopus database
2-s2.0-85129706833