All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Formal Setting for Period Doubling Bifurcation of Limit Cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131250" target="_blank" >RIV/00216224:14310/23:00131250 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-27082-6_27" target="_blank" >https://doi.org/10.1007/978-3-031-27082-6_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-27082-6_27" target="_blank" >10.1007/978-3-031-27082-6_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Formal Setting for Period Doubling Bifurcation of Limit Cycles

  • Original language description

    A rigorous description of period doubling bifurcation of limit cycles in autonomous systems of first order differential equations based on tools of functional analysis and singularity theory is presented. It is an alternative approach which is independent of the theory of discrete-time dynamical systems, especially Poincaré sections. Particularly, sufficient conditions for its occurrence and its normal form coefficients are expressed in terms of derivatives of the operator defining given equations. Also, stability of solutions is analysed and it is related to particular derivatives of the operator. Our approach is an adjustment of techniques used by Golubitsky and Schaeffer (Singularities and Groups in Bifurcation Theory: Volume 1. Springer, New York, 1985) in the study of Hopf bifurcation and it can be considered as a theoretical background for calculations presented in Kuznetsov et al. (SIAM J. Numer. Anal. 43:1407–1435, 2006). The normal form of a vector field derived in Iooss (J. Differ. Equ. 76:47–76, 1988) is not needed, since a given differential equation is considered as an algebraic equation. The theory used here concerns Fredholm operators, Lyapunov-Schmidt reduction and recognition problem for pitchfork bifurcation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016943" target="_blank" >EF19_073/0016943: Internal grant agency of Masaryk University</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th Chaotic Modeling and Simulation International Conference

  • ISBN

    9783031270819

  • ISSN

    2213-8684

  • e-ISSN

    2213-8692

  • Number of pages

    15

  • Pages from-to

    381-395

  • Publisher name

    Springer

  • Place of publication

    Cham (Switzerland)

  • Event location

    Athens (Greece)

  • Event date

    Jun 14, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article