Minimal coupling of gravitational and electromagnetic fields in General Relativity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131519" target="_blank" >RIV/00216224:14310/23:00131519 - isvavai.cz</a>
Result on the web
<a href="https://bookstore.ams.org/view?ProductCode=CONM/788" target="_blank" >https://bookstore.ams.org/view?ProductCode=CONM/788</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/788/15824" target="_blank" >10.1090/conm/788/15824</a>
Alternative languages
Result language
angličtina
Original language name
Minimal coupling of gravitational and electromagnetic fields in General Relativity
Original language description
In a general relativistic spacetime, we consider the gravitational field and the electromagnetic field, represented by the Levi–Civita connection and the scaled 2–-form. Then, concerning a charged particle with mass and charge (m, q), we obtain a minimal coupling of the gravitational connection with the electromagnetic field, yielding the total (nonlinear) connection. Actually, the standard Lorentz law of motion turns out to be equivalent, in terms of the total connection, to the vanishing total acceleration. Then, chosen a general observer, we rephrase the above total objects in terms of the observed electric and magnetic fields. The above results extend to an Einsteinian general relativistic framework, a minimal coupling of gravitational and electromagnetic fields, which has been found for classical and quantum mechanics in the Galilean framework.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The Diverse World of PDEs : Geometry and Mathematical Physics
ISBN
9781470471477
ISSN
0271-4132
e-ISSN
—
Number of pages
14
Pages from-to
151-164
Publisher name
American Mathematical Society
Place of publication
USA
Event location
Moscow
Event date
Dec 13, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—