An Unprecedented Arctic Ozone Depletion Event During Spring 2020 and Its Impacts Across Europe
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131622" target="_blank" >RIV/00216224:14310/23:00131622 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1029/2022JD037581" target="_blank" >https://doi.org/10.1029/2022JD037581</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2022JD037581" target="_blank" >10.1029/2022JD037581</a>
Alternative languages
Result language
angličtina
Original language name
An Unprecedented Arctic Ozone Depletion Event During Spring 2020 and Its Impacts Across Europe
Original language description
The response of the ozone column across Europe to the extreme 2020 Arctic ozone depletion was examined by analyzing ground-based observations at 38 European stations. The ozone decrease at the northernmost site, Ny-Ålesund (79°N) was about 43% with respect to a climatology of more than 30 years. The magnitude of the decrease declined by about 0.7% deg−1 moving south to reach nearly 15% at 40°N. In addition, it was found that the variations of the ozone column at each of the selected stations in March-May were similar to those observed at Ny-Ålesund but with a delay increasing to about 20 days at mid-latitudes with a gradient of approximately 0.5 days deg−1. The distributions of reconstructed ozone column anomalies over a sector covering a large European area show decreasing ozone that started from the north at the beginning of April 2020 and spread south. Such behavior was shown to be similar to that observed after the Arctic ozone depletion in 2011. Stratospheric dynamical patterns in March–May 2011 and during 2020 suggested that the migration of ozone-poor air masses from polar areas to the south after the vortex breakup caused the observed ozone responses. A brief survey of the ozone mass mixing ratios at three stratospheric levels showed the exceptional strength of the 2020 episode. Despite the stronger and longer-lasting Arctic ozone loss in 2020, the analysis in this work indicates a similar ozone response at latitudes below 50°N to both 2011 and 2020 phenomena.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geophysical Research: Atmospheres
ISSN
2169-897X
e-ISSN
2169-8996
Volume of the periodical
128
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1-18
UT code for WoS article
001022152500001
EID of the result in the Scopus database
2-s2.0-85147874926